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Introduction 
 
In the spring of 2004, MMTO began a project to upgrade the MMT servo control system to 
improve overall tracking and wind buffeting rejection. In support of this effort, a consultant, 
Ed Bell, was hired to assist with the controller development. The author, in turn, designed 
and built new hardware and software tools to collect system data, simulate its behavior, and 
implement a new prototype controller. The data collected with the new tools were used to 
refine and develop system models that subsequently drive controller design. Using this 
approach, provided you have a sufficiently accurate model, the control loop performance 
can be predicted with a great deal of confidence. This paper describes a case study done on a 
spare f/9 hexapod actuator that encapsulates all the steps involved in data collection and 
controller design that will be needed to implement a prototype controller on the MMT. 
 
The Control System Prototyping Problem 
 
It is often the case that engineers are given an electromechanical actuator of one sort or 
another and required to build a controller for it. In this case, “controller” would mean some 
sort of computer, with a user interface for interacting with the physical device. The usual 
solution is to design and build a “one of a kind” control system with whatever hardware and 
software would seem suited to the task. This approach is necessarily interdisciplinary, 
involving hardware designers, technicians, and software engineers to put together a complete 
package. 
 
Much of this design work can be avoided, or at least enormously speeded up, with the use of 
modern computing tools. The computing tool of choice here is MatLab with Simulink and 
some add-on tool boxes to bridge the gap between pure simulation and realization of actual 
control hardware and software. 
 
Why Use Matlab and Simulink? 
 
MatLab is an industry-recognized software suite for scientific numerical applications. 
Simulink is the add-on toolbox for simulation of physical and software-based systems, using 
graphical design entry for building models of the physical systems and processes of interest 
to the design engineer. It contains many methods for analysis and visualization of data, 
making the work of putting together system models and presenting numerical results fairly 
easy and problem-free. 
 
To extend the functionality of Simulink, MMTO owns licenses for a few more of The 
MathWorks’ toolboxes for Simulink, most notably Real-Time Workshop and xPC Target. 
Real-Time Workshop is essentially a Simulink diagram parser that generates C-code for a 
particular target computing environment. The MathWorks supports over a dozen targets, 
with many 3rd-party vendors also providing target support. For rapid control system 
prototyping, we use xPC Target.  
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What is xPC Target and Why Do We Use it? 
 
The MathWorks supplies an add-on Real-Time Operating System (RTOS) kernel they call 
xPC Target. It is designed to run on any x86-class PC, from desktop PCs to rack-mount units 
to single-board CPUs. It is a fairly lightweight RTOS that makes implementation of real-
world applications from Simulink easy.  Using this as the software target we get: 
 

• Seamless integration with Matlab and Simulink, keeping all the design tools in a single 
computing environment. 

• When new code is built it is automatically downloaded over the network to the target 
machine, making code changes and updates simple and fast. 

• Native telemetry and data logging, facilities that are absolutely necessary for 
measurement of the real-world behavior of the system under test. 

• Built-in GUIs for interacting with the target machine and collecting data, plus real time 
scopes for viewing signal levels during execution. 

• The usual OS kernel services such as timers, a network stack, file i/o, and low-level 
i/o drivers, freeing the designer from having to write this. 

• Bundled hardware i/o drivers written by The MathWorks. Over 150 different i/o 
boards are supported from dozens of vendors, obviating the need for custom-written 
hardware drivers.* 

• Control system hardware is cheap and easily available, as PCs are a commodity item. 
• Built-in benchmarking tools for estimating the total available performance from your 

particular target PC. 
• Code optimization and control over the general execution of the software represented 

by the Simulink diagram are available if necessary. 
• The size of the data logging circular buffer is controllable, and the kernel keeps track 

of whether the data log buffer has rolled over past the end.  
• The kernel detects CPU overloads, i.e. when the control algorithm execution time 

exceeds the time available inside a single sample period. 
• The kernel optionally logs the total execution time for your software, along with an 

average and maximum times, information that is necessary for deciding on design 
optimizations.  

 
The MMTO target PC is a surplus desktop PC with an Athlon 750MHz CPU and 1GB of 
memory. The kernel only supports a few types of network cards, so we installed an Intel Pro 
10/100 board from the supported hardware list. No hard drive is installed, as the kernel 
boots from a floppy disk. The i/o hardware is an SBS PCI-60A 6-channel PCI IP module 
carrier with 4 IP modules installed on it. These are an SBS IP-16ADC 16-channel analog 
input, an Acromag IP-230-4 4-channel analog output, an SBS IP-Quadrature 4-channel 
quadrature counter, and an SBS IP-Digital24 24-bit digital i/o unit. At present, we boot the 
kernel in text-only mode because using printf statements in custom code will print to the 
screen in this mode for debugging. Normally, you would use graphical mode to display 
graphics on the target machine. 
 
 
*Note: Unfortunately, MMTO only owned one IP-module that was in fact supported. Custom Simulink drivers 
were written by the author to support the others. Source code will be provided to anyone who asks. 
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F/9 Actuator Test Article 
 
The MMT f/9 hexapod has a spare actuator that was sent to the UA campus for repair. This 
was done and we began work on developing hardware changes for a future upgrade of the 
hexapod to the same hardware revision level as our f/5 unit. This made it convenient to use 
as a testbed for going through the process of control system prototyping while it was in the 
lab. 
 
The actuator is a linear roller nut driven by a DC brush motor, with an incremental encoder 
on the motor shaft and a linear potentiometer located parallel to the actuator body 
measuring the relative displacement of the roller nut and body of the unit. The MMTO 
Electronics Group built a small test box with an amplifier and i/o conditioning to handle 
driving the DC motor and powering the encoder and potentiometer circuitry. The 
potentiometer is conditioned by an operational-amplifier circuit that allows the zero point 
and span of the output to be adjusted. We also changed the limit switch mounting to a setup 
similar to the f/5 arrangement. These give a motion range of  about ±10mm from the center 
of the roller nut travel. 
 
The entire actuator is mounted in a fixture to hold it in place and prevent the roller nut from 
turning so that linear motion is maintained. The potentiometer circuit was then adjusted to 
provide 0V at the center, and 0.25V per mm of travel (the leadscrew pitch is 1mm). The 
incremental encoder is counted 4X, giving 20,000 counts per mm. Since the 1mm pitch is so 
basic, it was decided to design the control system to handle position commands in mm.  
 
F/9 Control System 
 
The design goals for the controller were these: 
 

1. A position control loop closed on the incremental encoder. 
2. Support for motions of as small as 1 micron. 
3. 1mm step changes in position completing within 5 seconds. 
4. Absolute positioning based on a short startup initialization from the potentiometer 

reading. 
5. Aware of limit switch status, stopping motion at limits and allowing reversing out of 

the limit. 
6. Network-based position commands, with current position returned over the 

network. 
 
To design the controller, we first must start with a model of the system. The model must be 
verified against actual measurements of the system, and then can be used to drive the 
controller design. The design can be iteratively tested on the model, with candidate 
controllers subsequently tested on the actual hardware. The model-based controllers are 
compared with the performance of the testbed controller as a check on the model/controller 
simulation. 
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F/9 System Models 
 
For this project, we obtained models with two different methods: (1) reducing open-loop 
measurements of the actuator response to continuous-time Laplace transfer functions; and 
(2) using the physical constants of the DC motor and the actuator to develop a simulation-
only model. As it turned out, both approaches were useful, with the final design utilizing a 
synthesis of the two methods. 
 
Open-Loop Method 
 
In the open-loop method, a signal of a known amplitude and frequency is applied to the 
system under test, and the response signal is measured. The ratio of the input to the output 
becomes the transfer function magnitude response, and any phase shift input to output its 
phase response. 
 
Simulink provides several signal sources for excitation. One of these is a continuous 
sinewave chirp signal that begins at some user-selected frequency and sweeps up to a 
selected target frequency at a specific target time. At first blush, this was a useful source 
block, but it soon was obvious that the “factory” chirp source doesn’t provide enough cycles 
at low frequencies to give good input/output estimates. A custom Simulink chirp source 
block was then written by the author to provide a chirp with user-selectable frequencies, 
number of cycles per frequency, frequency step size, and final target frequency. This gives 
excellent transfer function estimation results. This chirp source is currently being used by 
both MMTO and LBTO for system excitation and response measurement. 
 
Once the input/output data are in hand, Matlab has a function in the Signal Processing 
Toolbox called tfe that estimates a transfer function based on a sliding-window FFT of  the 
input/output data. It returns complex numbers for the response, from which the magnitude 
and phase can be extracted. This complex vector is then passed to the function invfreqs to 
get the Laplace-transform numerator and denominator coefficients up to an order selected 
by the user. 
 
The Simulink diagram used to generate the real time code for the open-loop data collection 
is shown here: 
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Yellow blocks are i/o drivers, blue are xPC Scopes, blue foreground are custom Simulink 
blocks, red are signal output ports exposed to the datalogging system, and black blocks are 
standard Simulink library blocks. 
 
The chirp signal response was applied to tfe and results in these transfer function graphs: 

 
Magnitude Response 

 

 
 

Phase Response 
 

s can be seen, the encoder and potentiometer are scaled to mm, and the excitation signal 

 

he noise of the potentiometer makes the response a bit nonlinear, so it was clear that the 

 
 
A
voltage is logged after passing through a user-selected gain. In addition, all the signals are 
multiplexed and presented to a Host Scope, a TCP/IP connection object that runs on the 
system host PC for real time display of the signals during operation. Logged data are stored
on the target machine and transmitted over the network connection to the Matlab variable 
workspace when requested. The results can then be manipulated and stored on disk. 
 
T
design would have to include low-pass filtering of the potentiometer output. The 
incremental encoder was quite clean. 
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Physical Model Method 
 
With the physical model, the engineer represents the system under consideration in Simulink 
using the basic physical constants and behavior of the system. This can be time-consuming 
and error-prone, and it is highly recommended that physical models always be compared to 
actual measurements whenever possible. 
 
For this model, we can take into account nonlinear effects such as friction that are not 
available in the pure Laplace representation, and so this model complements the Laplace 
version of the model. 
 
A Simulink diagram with a DC motor with nonlinear components in the loop, along with the 
continuous-time Laplace model, was developed for comparing the two modeling methods. 
Below is the DC motor model: 

 
 
Since the test-fixture amplifier is a voltage source, this model lends itself well to the actual 
system. The input DC voltage is resisted by the motor resistance and inductance, producing 
a current through the motor, which then develops torque according to its torque constant, 
Kt. This torque, divided by the motor (and load) inertia, results in acceleration. A single 
integration gives the motor velocity, which feeds back and gives rise to the Back-EMF and 
velocity damping terms. An additional input for friction allows the friction torque loss to be 
added to the model. 
 
The two models, linear and nonlinear, then appear in this Simulink diagram: 
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The DC motor has a friction term proportional to its velocity resisting the torque, and a 
hysteresis term in the position output, which is formed by an additional integration of the 
velocity.  The velocity-friction term has a dependence on the sign of the velocity to represent 
the friction differential of the roller nut depending on the direction of motion. The 
continuous-time model, on the other hand, is just the tfe-produced Laplace coefficients 
supplied to an LTI System block. The input/output data are then copied to the Matlab 
workspace with To Workspace blocks. The input chirp signal is the identical block used in 
the open-loop real time model. 
 
With the input/output from the Simulink model and the real time model data in the Matlab 
workspace, we can easily graph the results for comparison: 
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As is evident, the simplistic friction model overstates the friction behavior a bit, while the 
continuous-time model gives good general agreement with the amplitude and trend of the 
data. A close look at the nonlinear model and actual outputs shows the effect of the 
hysteresis at the signal peaks, which are clipped slightly. With this level of model agreement, 
it was decided to begin the control loop design, as increasing the model accuracy was judged 
not worth the additional time. 
 
For a first cut at the design, a Simulink diagram was generated with the two models in place 
and a PID controller around the motor position signal. A standard Simulink PID block was 
inserted and a step signal source was used to simulate the closed-loop step response. 
 
The design with the continuous-time PID block was iterated until an acceptable-looking 
response was achieved. This design was then transferred to a real time version and tested on 
the actuator. 
 
The results comparing the measured PID loop response and the nonlinear model with the 
same PID control law are shown here: 
 
 

 
More work was done with this controller to eliminate the overshoot (due to the I, or 
integration, term) by adding Derivative (D) gain, but this led to very sluggish behavior that 
made small displacements take an unacceptable length of time. 
 
The PID control was then abandoned in favor of a simpler discrete-time control law that 
maintains a Proportional gain and only applies an Integral when the position error is smaller 
than some (arbitrary) value: 
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The two models were again tested with this new control law and tuned to acceptable 
performance levels. This Simulink diagram was used for the tuning: 
 

gain, the Simulink model output and the real time system output were compared as a check 

 
  
A
on the tuning and modeling accuracy. 
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The real time version of the code was generated from this Simulink diagram: 
 

 
In this case, we logged the input/output signals in real time from the step command for later 
comparison to the models. We have also added limit switch handling and absolute 
positioning, discussed later in this paper. 
 
Some comparisons of the models and the actual response are shown starting on the next 
page: 
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The models all gave good general agreement, though it is clear the nonlinear model’s friction 
setup was off by a significant amount, especially for the small displacements. In every case, 
however, the Integral term took care of any stiction effects and the commanded motion was 
completed successfully. We met design goals #1-3 with this controller. 
 
Extending Controller Functionality 
 
The final three design goals of absolute positioning, limit switch awareness, and network i/o 
are also implemented and tested with the following additions to the real time code model. 
 
Absolute Positioning 
 
Since we close the loop around the incremental encoder, which initializes at a position of 0 
counts whenever the code starts up, we want to find an absolute position, latch the value, 
and add it to the incremental encoder position so that any subsequent motion is measured by 
the encoder and varies the absolute position. This is accomplished by the “Position Encoder 
Handler” subsystem in the controller diagram. 
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The encoder is scaled to mm and applied to a summing junction. The potentiometer is also 
scaled to mm and passes through a low-pass FIR filter with a low passband. For the first 
5000 sample periods of the software, the sample and hold block is open, allowing the filter 
to settle. At 5001 samples (5.001s at the 1kHz loop update rate), the S/H goes into hold 
mode, latching the potentiometer value, which is then added to the encoder at the summing 
junction. 
 
We had a race condition that occurred when previous to latching the absolute position value, 
the control law integrator would wind up and give erroneous output commands to the DAC. 
This was corrected by forcing the controller error signal to zero during the initialization 
phase: 
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Limit Switch Handling 
 
We wanted to make sure limits couldn’t be exceeded, and back away when the limit is 
tripped. We added two digital inputs tied to the normally-closed switch inputs, which have 
their common terminals wired to circuit ground. Since the IP-Digital24 has pull-ups on all its 
signal lines, when the switch is tripped the limit signal will go high. It will also be high if for 
some reason the limit input is disconnected. 
 
The addition to the real time diagram for this is instantiated in the “Limit Switch Handler” 
subsystem in the controller: 
 

 
If the PI loop command is positive, the Plus Limit AND the command drive the OR gate, 
and likewise for the Minus Limit AND a negative command signal. If the OR operation 
outputs a 1, the DAC command is forced to 0V, stopping the motion. Conversely, if the 
limit is active and the command changes sign, the DAC is connected to the control law 
output and motion is enabled. 
 
Network Commands and Returning Current Position 
 
The final piece of the puzzle is adding network i/o for getting user inputs and displaying the 
current absolute position over the network. The xPC Target block library contains several 
blocks for doing UDP transmissions and reception, and so these were used along with an 
author-written Java GUI to do the user input/output. 
 
The UDP receive block will hold the last-received value from the network, and starts up 
with a user-specified value, so that if new packets are not (or never) received, the behavior is 
well-defined. The default for the startup is 0.0, so we take advantage of that to provide some 
safety in the controller command handling; the reception expects two double-precision 
numbers, one of which allows the command to actually get into the controller, and the 
command itself. The “GoSignal” number is also used to force the feedback value to 0.0 so 
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that integrator windup after startup doesn’t occur. Since UDP is officially connectionless and 
unreliable, the “Go Signal” is also used to qualify the received packet to try to ensure that 
the received data was not garbled; should the “GoSignal” number be different than expected 
by the UDP Disable switch, the DAC remains at 0V. The final version of the controller with 
UDP i/o looked like this: 
 

he UDP reception subsystem contained just a few blocks: 

 

 
 
T
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The UDP receive block samples the network at 0.5s intervals looking for new command 
packets. Should one not be received or is bad, it will hold the last value. A rate transition 
block gets the slow UDP data into the fast (1kHz) controller.  Simulink systems with more than 
one sample rate must have the slower sample times at integer multiples of the base (or fastest) sample rate. 
 
The UDP transmission is likewise simple with another rate transition for sending current 
position updates every 0.5s: 
 

 
User Interface 
 
Finally, some sort of user interface to test the whole controller was needed. One 
straightforward (and hopefully platform-independent) way to do this is to generate a GUI 
for Java. The author wrote this GUI so that command packets are sent over the network 
whenever the “Send Command” button is clicked. Clicking the “Kill Motion” button turns 
off the “Go Signal” number in the controller, zeroing the DAC and terminating any motion 
in progress. A Swing Timer listens for current position packets every second, and updates 
the GUI display accordingly. User commands are parsed and formatted into a number 
representation of NN.NNN,  and current position numbers also receive this formatting, so 
that 1 micron commands are supported. No attempt to apply software limits are 
implemented here; the GUI happily sends commands that exceed the physical limits of the 
system. The controller just as happily complies until the limit switch is reached. Bad user 
entries are ignored and an error message is displayed on the GUI. 
 

 16



The final Java GUI window looks like this: 
 
 
 

 
 
 
Conclusion 
 
The Simulink environment, coupled with the integrated data collection and reduction tools 
available with xPC Target and MatLab, has proven to be a reliable and accurate way of 
quickly identifying system behavior, qualifying candidate controllers, and implementing them 
for testing. Built-in network i/o is simple and easy, and user interfaces can be efficiently 
integrated into a controller to complete the package. The rapidity of control software 
development using automated graphical programming software leads to tremendous gains in 
development cycle times. This will be a valuable tool for MMTO servo system design and 
testing.  
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